Rumus-Rumus Termodinamika

Subbagian ini akan menjelaskan rumus-rumus Hukum Pertama dan Hukum Kedua Termodinamika.

Hukum Pertama Termodinamika[sunting]

Perubahan energi dalam:  \Delta U= U_2 - U_1
Keterangan:
  •  \Delta U:Perubahan energi dalam (Joule)
  • U2:Energi dalam pada keadaan akhir (Joule)
  • U1:Energi dalam pada keadaan awal (Joule)
Usaha yang dilakukan oleh gas pada tekanan tetap:
 W = p \times \Delta V = p \times (V_2 - V_1)
Keterangan:
  • p: Besarnya tekanan (atm)
  •  \Delta V: Perubahan volume (liter)
Rumus umum usaha yang dilakukan gas:  W = \int_{v_1}^{v_2} p dV
Penghitungan energi dalam:
  • Gas monoatomik:  \Delta U = \frac {3}{2}n \times R \times \Delta T = \frac {3}{2}n \times R \times (T_2-T_1)
  • Gas diatomik:  \Delta U = \frac {5}{2}n \times R \times \Delta T = \frac {5}{2}n \times R \times (T_2-T_1)

Proses-proses termodinamika gas[sunting]

Proses isobarik[sunting]

Diagram proses isobarik. Daerah berwarna kuning sama dengan usaha yang dilakukan.
Proses isobarik adalah perubahan keadaan gas pada tekanan tetap.
Persamaan keadaan isobarik:  \frac {V_2}{T_2}= \frac {V_1}{T_1}
Usaha yang dilakukan pada keadaan isobarik:  W = p \times \Delta V

Proses isokhorik[sunting]

Digram proses isokhorik. Grafiknya berupa garis lurus vertikal karena volumenya tidak berubah. Tidak ada usaha yang dilakukan pada proses isokhorik.
Proses isokhorik adalah perubahan keadaan gas pada volume tetap.
Persamaan keadaan isokhorik:  \frac {p_2}{T_2}= \frac {p_1}{T_1}

Proses isotermis/isotermik[sunting]

Proses isotermik. Daerah berwarna biru menunjukkan besarnya usaha yang dilakukan gas.
Proses isotermik adalah perubahan keadaan gas pada suhu tetap.
Persamaan keadaan isotermik:  p_2 \times V_2= p_1 \times V_1
Usaha yang dilakukan pada keadaan isotermik:
  • Dari persamaan gas ideal
 p= \frac {n \times R \times T}{V}
  • Rumus umum usaha yang dilakukan gas:
 W = \int_{v_1}^{v_2} p dV
maka:  W = \int_{v_1}^{v_2} \frac {n \times R \times T}{V} dV
karena  n \times R \times T bernilai tetap, maka:
 W = {n \times R \times T} \int_{v_1}^{v_2} \frac {dV}{V}

Ingat integral ini!
 \int \frac {dx}{x} = \ln x
maka persamaan di atas menjadi
 W = n \times R \times T \times[\ln V_2 - \ln V_1]
maka menjadi:
 W = n \times R \times T \times \ln (\frac {V_2}{V_1})

Proses adiabatik[sunting]

Proses adiabatik. Warna biru muda menunjukkan besarnya usaha yang dilakukan.
Proses adiabatik adalah perubahan keadaan gas dimana tidak ada kalor yang masuk maupun keluar dari sistem.
Persamaan keadaan adiabatik:  p_1 \times V_1^{\gamma} =  p_2 \times V_2^{\gamma}
Tetapan Laplace:  \gamma = \frac {C_p}{C_V}
karena  p= \frac {n \times R \times T}{V} , maka persamaan diatas dapat juga ditulis:
 T_1 \times V_1^{\gamma-1} =  T_2 \times V_2^{\gamma-1}
Usaha yang dilakukan pada proses adiabatik:  W = \frac {1}{\gamma-1} (p_1 \times V_1 - p_2 \times V_2)

Sumber[sunting]

Kanginan, Marthen (2002). Fisika Untuk SMA Kelas XI Semester 2. Erlangga. ISBN 978-979-015-273-1.

0 comments: